Medicinal plants and associated microorganisms are recognized to have beneficial relationship. These two organisms are well known for their ability to produce bioactive secondary metabolites which the similarity has been demonstrated in a few works. This study had for objective to assess biological potentials of actinomycetes isolated from ginger rhizomes and its rhizospheric soil and to determine their similarity and efficiency with ginger essential oil. Among the 63 actinomycetes strains isolated from the rhizomes and rhizospheric soils of two ginger countries plantations of Soavinandriana Itasy-Madagascar, biological activity tests showed that 16 strains (2 endophytes and 14 from rhizospheric soils of ginger) exhibited antimicrobial activity against at least one germ. The strains are more active against Gram+ bacteria and fungi than Gram- bacteria. Only, one strain isolated from ginger rhizospheric soil of the site n°2 (AHO 18) inhibited the development of all tests germs. The tests conducted on six representative strains selected on the basis of antimicrobial assay showed that extracts from the isolates AHO 3 and AHO 43 have strong antiproliferative activity on cells HT-20 (colon cancer) with IC50 values of 5µg/ml and 2,2μg/ml, respectively; strong antimalaria activity against the chloroquino-resistant Plasmodium falciparum strain (IC50=1,25μg/ml for AHO 3 extract and 2,5<IC50<5µg/ml for AHO 43 extract) and antioxidant activity (IC50=15mg/ml for AHO 3 extract and 10,6mg/ml for AHO 43 extract). The 2 isolates based on phenotypic and molecular characterization using their 16S rRNA gene were identified as Streptomyces chrysomallus (isolate AHO 3) and Streptomyces sp (isolate AHO 43). Moreover, the two essential oils of ginger tested showed antimicrobial activity against all tests germs used and antioxidant activity. Only, ginger essential oil from the site n°2 exhibited moderate antiproliferative potential (IC50=14μg/ml) on colon cancer cells and high antiplasmodial activity (2,5<IC50<5µg/ml). Streptomyces sp showed similar and strong biological activities than those of ginger essential oil from the site n°2. Chemical screening of the Streptomyces sp extract and the essential oil H2 revealed the common presence of terpens and phenolic compounds.
Published in | American Journal of Life Sciences (Volume 4, Issue 6) |
DOI | 10.11648/j.ajls.20160406.13 |
Page(s) | 152-163 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Actinomycetes, Endophytes, Rhizospheric Soil, Rhizome, Ginger, Essential Oil, Antimicrobial, Antioxidant, Antimalaria, Antiproliferative
[1] | Amna T., Puri S. C., Verma V., Sharma J. P., Khajuria R. K., Musarrat T, J., Spiteller M. and Qazi G. N. (2006). Bioreactor studies on the endophytic fungus Entrophospora |
[2] | Shweta S., Zuehlke S., Ramesha B. T., Priti V., Mohana Kumar P., Ravikanth G., Spiteller M., Vasudeva R. and Uma Shaanker R. (2010). Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. Ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 71: 117-22. |
[3] | Zhao J., Li C., Wang W., Zhao C., Luo M., Mu F. et al. (2013). Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L] Mill sp.). J. Appl. Microb., 115: 102-113. |
[4] | Huang J. X., Zhang J., Zhang X. R., Zhang K., Zhang X. et al. (2014). Mucorfragilis as a novel source of the key of pharmaceutical agents podophyllotoxin and kaempferol. PharmBiol., 52: 1237- 1243. |
[5] | Caruso M., Colombo A. L., Fedeli L., Pavesi A., Quaroni S., Saracchi M., and Ventrella G.(2000). Isolation of endophytic fungi and actinomycetes taxane producers. Ann. Microbiol. 50: 1-13. |
[6] | Akshatha V. J., Nalini M. S., D’ Souza, Prakash H. S. (2014). Streptomycete endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit alpha-amylase and promote glucose uptake. Lett Appl Microbiol., 58: 433-439. |
[7] | Newman D. J., Cragg G. M. and Snader K. M. (2003). Natural Products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 66 (7): 1022-1037. |
[8] | Oskay M., Tamer A. U. and Azeri C. (2004). Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. African Journal of Biotechnology, 3 (9): 441-446. |
[9] | Jeffrey L. S. H. (2008). Isolation, characterization and identification of actinomycetes from agriculture soils at Semongok, Sarawak. African Journal of Biotechnology, 7 (20): 3697-3702. |
[10] | Igarashi Y., Iida T., Sasaki T., Saito N., Yoshidaa R., and Furumai T. (2002). Isolation of actinomycetes from live plants and evaluation of antiphytopathogenic activity of their metabolites. Actinomycetologica, 16 (1): 9-13. |
[11] | Inderiati S. and Franco C. M. M. (2008). Isolation and Identification of Endophytic Actinomycetes and their Antifungal Activity. Journal of Biotechnology Research in Tropical Region, 1: 1-6. |
[12] | Boughachiche F., Reghioua S., Oulmi L., Zerizer H., Kitouni M., Boudemagh A., Boulahrouf A. (2005). Isolement d’actinomycétales productrices de substances antimicrobiennes à partir de la Sebkha de Ain Mlila. Sciences &TechnologieC, 5-10. |
[13] | Kumar S. M. and Selvam. K. (2011). Prospective efficacy of bioactive extract of novel actinomycetes against malignant cell and multidrug resistant bacteria. Pharmacology on line, 1: 1262-1290. |
[14] | Zerizer H., Oulmi L., Boughachiche F., Reghioua S., Boudemagh A., Kitouni M. and Boulahrouf A. (2006). Identification d’une actinomycétale, productrice d’antibactériens, isolée de sols arides de la région de Biskra. Sciences &Technologie, 24: 17-22. |
[15] | Butt M. S and Sultan M. T. (2011). Ginger and its health claims: molecular aspects. Crit Rev Food Sci Nutr, 51 (5): 383-393. |
[16] | Katzer G. (2012). Ginger (Zingiberofficinalerosc). gernot-katzers-spice-pages.com. |
[17] | Chaiyakunapruk N., Kitikannakorn N. et al. (2006). The efficacy of ginger for the prevention of postoperative nausea and vomiting: a meta-analysis. Am J Obstet Gynecol., 194 (1): 95-99. |
[18] | Apariman S., Ratchanon S., Wiriyasirivej B. (2006). Effectiveness of ginger for prevention of nausea and vomiting after gynecological laparoscopy. J Med Assoc Thai. 89 (12): 2003-2009. |
[19] | Jolad S. D., Lantz R. C. et al. (2005). Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochemistry, 66 (13): 1614-1635. |
[20] | Karna P., Chagani S., Gundala S. R., Rida P. C., Asif G., Sharma V., Gupta M. V. and Aneja R. (2012). Benefits of whole ginger extract in prostate cancer. Br J Nutr., 107 (4): 473-484. |
[21] | Taechowisan T. and Lumyong S. (2003). Activity of endophytic actinomycetes from roots of Zingiber officinale and Alpinia galanga against phytopathogenic fungi. Annal of Microbiology, 53 (3): 291-298. |
[22] | Jasim B., Aswathy Agnes Joseph, Jimtha John C., Mathew J., Radhakrishnan E. K. (2013). Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech., 8p. |
[23] | Andriambeloson O., Rasolomampianina R. and Raherimandimby M. (2014). Selection and characterization of bioactive actinomycetes associated with the medicinal plant Ginger (Zingiber officinale). Journal of International Academic Research for Multidisciplinary. 2 (9): 30-45. |
[24] | Fisher P. J., Petrini O. and Lappin-Scott H. M. (1992). The distribution of some fungal and bacteria endophytes in maize (Zea mays L.) New Phytol. 122: 299- 305. |
[25] | Pereira J. O., Azevedo J. L. and Petrini O. (1993). Endophytic fungi from stylosantes: a preliminary report. Mycologia. 85: 362-364. |
[26] | Pereira J. O., Carneiro-Vieira M. L. and Azevedo J. L.(1999). Endophytic fungi from Musa acuminate and their reintroduction in axenic plants. World J. Microbiol. Biotechnol. 15: 47-51. |
[27] | Acar J. F. and Goldstein F. W. (1996). Disk Susceptibility Test. In: V. Lorian. “Antibiotics in Laboratory Medicine”. Baltimore: William and Wilkins Co. 4th Edt: 1-51. |
[28] | Loqman S., Barka E. A., Clément C. and Ouhdouch Y. (2009). Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World Journal of Microbiology and Biotechnology, 28: 81-91. |
[29] | Leitao G. G., Leitao S. G. and Vigelac W. (2002). Quick preparative separation of natural naphthopyranones with antioxidant activity by high-speed counter-current chromatography. Z Naturforsch, 57: 1051-1055. |
[30] | Sharififar F., Moshafi M. H., Mansouri S. H., Khodashenas M. and Khoshnoodi M. (2007). In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control, 18: 800-805. |
[31] | Cao S., Brodie P. J., Miller J. S., Randrianaivo R., Ratovoson F., Birkinshaw C., Andriantsiferana R., Rasamison V. E., and Kingston D. G. I. (2007). Antiproliferative Xanthones of Terminalia calcicola from the Madagascar Rain Forest. J. Nat. Prod., 70: 679- 681. |
[32] | Harinantenaina L., Bowman J. D., Brodie P. J., Slebodnick C., Callmander M. W., Rakotobe E., Randrianaivo R., Rasamison V. E., Gorka A., Roepe D., Cassera M. B. and Kingston D. G. I. (2012). Antiproliferative and Antiplasmodial Dimeric Phloroglucinols from Mallotus oppositifolius from the Madagascar Dry Forest. Journal of natural products, A-F. |
[33] | Fong H. H. S., Tin W. A. M. and Farnsworth N. R. (1977). Phytochemical screening. Review. Chicago: University of Illinois, 73-126. |
[34] | Intra B., Mungsuntisuk I., Nihira T., Igarashi Y. and Panbangred W. (2011). Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum. spp, the causative agent of anthracnose disease. BMC Research Notes, 4: 98. |
[35] | Crawford D. L., Lynch J. M. and Ousley M. A. (1993). Isolation and characterisation of actinomycetes antagonists of a fungal root pathogen. Appl. Envirnm. Microbiol. 59 (11): 899-3905. |
[36] | Zinniel D. K, Lambrecht P., Harris N. B., Feng Z., Kuczmarski D., Higley P., Ishimaru C. A., Arunakumari A., Barletta R. G. and Vidaver A. K. (2002). Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol, 68: 2198-2208. |
[37] | Hasegawa S., Meguro A., Shimizu M., Nishimura T. and Kunoh H. (2006). Endophytic actinomycetes and their interactions with host plants. Actinomycetologica, 20: 72–81. |
[38] | Gangwar M., Dogra S., Gupta U. P. and Kharwar R. N. (2014). Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. African Journal of Microbiology Research, 8 (2): 184-191. |
[39] | Basilio A., González I., Vicente M. F., Gorrochategui J., Cabello A., González A. and Genilloud O. (2003). Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. J. Appl. Microbiol., 95: 814-823. |
[40] | Sacramento D. R., Coelho R. R. R., Wigg M. D., Linhares L. F. T. L., Santos M. G. M., Semêdo L. T. A. S. and Silva A. J. R. (2004). Antimicrobial and antiviral activities of an actinomycete (Streptomyces sp.) isolated from a Brazilian tropical forest soil. World J. Microbiol. Biotechnol., 20: 225-229. |
[41] | Scherrer R. and Gerhardt, P. (1971). Molecular sieving by the Bacillum megaterium cell wall and protoplast. Journal of Bacteriology, 107: 718-735. |
[42] | Yuan, W. M. and Crawford D. L. (1995). Characterization of Streptomyces lydicus WYEC 108 as a Potential Biocontrol Agent against Fungal Root and Seed Rots. Appl. Environ. Microbiol., 61: 3119-3128. |
[43] | El-Tarabily K. A., Hardy G. E. St. J., Sivasithamparam K., Hussein A. M. and Kurtboke D. I. (1997). The Potential for the Biological Control of Cavity-Spot Disease of Carrots, Caused by Pythium coloratum, by Streptomycete and NonStreptomycete Actinomycetes. New Phytol., 137: 495-507. |
[44] | Getha K. and Vikineswary. S. (2002). Antagonistic Effects of Streptomyces violaceusniger Strain G10 an Fusarium oxysporum f. sp. cubense Race 4: Indirect Evidence for the Role of Antibiotics in the Antagonistic Process. J. Industrial Microbiol. Biotech., 28: 303-310. |
[45] | Aghighi S., Bonjar G. H. S., Rawashdeh R., Batayneh S. and Saadoun I. (2004). First Report of Antifungal Spectra of Activity of Iranian Actinomycetes Strains against Alternaria solani, Alternata alternate, Fusarium solani, Phytophthora megasperma, Verticillium dahliae and Saccharomyces cerevisia. Asian J. Plant Sci., 3: 463-471. |
[46] | Verma V. C.; Gond S. K.; Kumar A.; Mishra A.; Kharwar R. N. and Gange A. C. (2009). Endophytic actinomycetes from Azadirachta indica A. Juss.: Isolation, diversity, and anti-microbial activity. Microbial Ecol., 57: 749-756. |
[47] | Zhong K., Gao X. L., Xu Z. J., Gao H., Fan S., Yamaguchi I., Li L. H. and Chen R. J. (2011). Antioxidant activity of a novel Streptomyces strain Eri 12 isolated from the Rhizosphere of Rhizoma curcumae longae. Cur Res Bacteriol, 4: 63-72. |
[48] | Thenmozhi M. and Kannabiran. (2012). Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7. Oxid Antioxid Med Sci., 1 (1): 51-57. |
[49] | Boyd M. R. (1997). Preclinical Screening, Clinical Trials, and Approval in: Teicher, B. A. Anticancer Drug Development Guide. Totowa: Ed. Humana Press, 23-42. |
[50] | Kwon H. C., Kauffman C. A. and Jensen P. R. (2006). Marinomycins a-d, antitumor antibiotics of a new structure class from a marine actinomycete of the recently discovered genus Marinospora. Journal of the American Chemical Society, 128: 1622- 1632. |
[51] | Malet-Gason L., Romero F., Espliego-Vazquez F., Gravalos D. and Fernandez-Puentes J. L. (2009). IB-00208, a new cytotoxic polyciclic xanthone produced by a marine-derived Actinomadura. The journal of Antibiotics, 56: 219-225. |
[52] | Ponce A. G., Fritz R., Del Valle C. and Roura S. I. (2003). Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. Lebensmittel- Wissenschaft und Technologic, 36: 679-684. |
[53] | Oussalah M., Caillet S., Saucier L. and Lacroix M. (2007). Inhibitory effects of selected plant essential oils on four pathogen bacteria growth: E. coli O157: H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control., 18 (5): 414-420. |
[54] | Kikuzaki H. and Nakatani N. (1996). Cyclic diarylheptanoids from rhizomes of zingiber officinale. Phytochemistry, 43 (1): 273-277. |
[55] | Kim E. C., Min J. K. et al. (2005). [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem Biophys Res Commun., 23 (2): 300-308. |
[56] | Aggarwal B. B. and Shishodia S. (2006). Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol., 71 (10): 1397-1421. |
[57] | Takahashi Y. and Omura S. (2003). Isolation of new actinomycete strains for the screening of new bioactive compounds. Journal of Genetic Applied Microbiology; 49: 141-154. |
[58] | Wall M. E., Wani M. C. and Taylor H. (1987). Plant antitumor agents. Isolation, structure, and structure activity relationships of alkaloids from Fagara macrophylla. Journal of Natural Products, 50: 1095-1099. |
[59] | Basco L. K., Mitaku S., Skaltsounis A. L., Ravelomanantsoa N., Tillequin F., Koch M. and Le Bras J. (1994). In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 38: 1169-1171. |
[60] | Gakunju D. M., Mberu E. K., Dossaji S. F., Gray A. I., Waigh R. D., Waterman P. G. and Watkins W. M. (1995). Potent antimalarial activity of the alkaloid nitidine, isolated from a Kenyan herbal remedy. Antimicrobial Agents and Chemotherapy, 39: 2606-2609. |
[61] | Namukobe J., Kiremire B. T., Byamukama R., Kasenene J. M., Dumontet V., Guéritte F., Krief S., Florent I and Kabasa J. D. (2013). Nouveaux triterpènes à activité antiplasmodiale isolés des feuilles de Neoboutonia macrocalyx L., une plante consommée par les chimpanzés du parc national de Kibale (Ouganda). Revue de primatologie, 5. |
[62] | Konoshima T., Takasaki M., Tokuda H., Masuda K., Arai Y., Shiojima K. and Ageta H. (1996). Anti-tumor-promoting activities of triterpenoids from ferns. Biological and pharmaceutical bulletin, 19 (7): 962-965. |
[63] | Bok J. W., Lermer L., Chilton J., Klingeman H. G and Towers Neil G. H. (1999). Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry, 51: 891-898. |
[64] | Chen M., Theander T. G., Christensen S. B., Hviid L., Zhai L. and Kharazmi A. (1994). Licochalcone A, a New Antimalarial Agent, Inhibits In Vitro Growth of the Human Malaria Parasite Plasmodium falciparum and Protects Mice from P. yoelii Infection. Antimicrobial Agents and Chemotherapy, 1470-1475. |
[65] | Kolodzie J., Kayser O., Latte K P., Ferreira D. (1999). Evaluation of the antimicrobial potency of tannins and related compounds using the microdilution both method. Planta medica, 65 (5): 444-446. |
[66] | Bouchet N., Barrier L. and Fauconneau B. (1998). Radical scavenging activity and antioxydant proprieties of tannins from Guiera senegalensis (Combretaceae). Phytotherapyresearch, 12 (3): 159-162. |
[67] | Yoshida T. Hatano T., Miyamoto K., Okuda T., Brouillard R. and Jay M. (1995). Antitumor and related activities of ellagitannin oligomers. Les colloques: Polyphenols 94, Palma de Mallorca, 69: 123-132. |
[68] | Velomalala N. M., Raherimandimby M., Ramamonjisoa D. (2013). Contribution à l’étude des propriétés biologiques des extraits de feuilles de Senecio faujasioïdes (Asteraceae). Journal International de santé au travail, 1: 33-40. |
[69] | Ahn B. Z. and Lee. J. H. (1989). Cytotoxic and cytotoxicity-potentiating effects of the Curcuma root on L1210 cell. Korean Journal of Pharmacognosy, 20: 223-226. |
[70] | Edris A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents. A reviewPhytother Res, 21: 308-323. |
[71] | Encheqroun H. K. B., Ghanmi M., Satrani B., Aafi A. and Chaouch A. (2012). Activité antimicrobienne des huiles essentielles d’Artemisia esatlantica, plante endémique du Maroc. Bulletin de la Société Royale des Sciences de Liège, 81: 4-21. |
[72] | Sing R., Marimuthu P., De Heluani C. S and Catalan Ceser A. N. (2006). Antioxidant and biocidal Activities of Carum nigrum (seed) Essential oil, Oleoresin, and their selected components. Journal of Agricultural and Food Chemistry, 54: 174-181. |
APA Style
Herivony Onja Andriambeloson, Rado Rasolomampianina, Rahanira Ralambondrahety, Rigobert Andrianantenaina, Marson Raherimandimby, et al. (2016). Biological Potentials of Ginger Associated Streptomyces Compared with Ginger Essential Oil. American Journal of Life Sciences, 4(6), 152-163. https://doi.org/10.11648/j.ajls.20160406.13
ACS Style
Herivony Onja Andriambeloson; Rado Rasolomampianina; Rahanira Ralambondrahety; Rigobert Andrianantenaina; Marson Raherimandimby, et al. Biological Potentials of Ginger Associated Streptomyces Compared with Ginger Essential Oil. Am. J. Life Sci. 2016, 4(6), 152-163. doi: 10.11648/j.ajls.20160406.13
AMA Style
Herivony Onja Andriambeloson, Rado Rasolomampianina, Rahanira Ralambondrahety, Rigobert Andrianantenaina, Marson Raherimandimby, et al. Biological Potentials of Ginger Associated Streptomyces Compared with Ginger Essential Oil. Am J Life Sci. 2016;4(6):152-163. doi: 10.11648/j.ajls.20160406.13
@article{10.11648/j.ajls.20160406.13, author = {Herivony Onja Andriambeloson and Rado Rasolomampianina and Rahanira Ralambondrahety and Rigobert Andrianantenaina and Marson Raherimandimby and Fidèle Randriamiharisoa}, title = {Biological Potentials of Ginger Associated Streptomyces Compared with Ginger Essential Oil}, journal = {American Journal of Life Sciences}, volume = {4}, number = {6}, pages = {152-163}, doi = {10.11648/j.ajls.20160406.13}, url = {https://doi.org/10.11648/j.ajls.20160406.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajls.20160406.13}, abstract = {Medicinal plants and associated microorganisms are recognized to have beneficial relationship. These two organisms are well known for their ability to produce bioactive secondary metabolites which the similarity has been demonstrated in a few works. This study had for objective to assess biological potentials of actinomycetes isolated from ginger rhizomes and its rhizospheric soil and to determine their similarity and efficiency with ginger essential oil. Among the 63 actinomycetes strains isolated from the rhizomes and rhizospheric soils of two ginger countries plantations of Soavinandriana Itasy-Madagascar, biological activity tests showed that 16 strains (2 endophytes and 14 from rhizospheric soils of ginger) exhibited antimicrobial activity against at least one germ. The strains are more active against Gram+ bacteria and fungi than Gram- bacteria. Only, one strain isolated from ginger rhizospheric soil of the site n°2 (AHO 18) inhibited the development of all tests germs. The tests conducted on six representative strains selected on the basis of antimicrobial assay showed that extracts from the isolates AHO 3 and AHO 43 have strong antiproliferative activity on cells HT-20 (colon cancer) with IC50 values of 5µg/ml and 2,2μg/ml, respectively; strong antimalaria activity against the chloroquino-resistant Plasmodium falciparum strain (IC50=1,25μg/ml for AHO 3 extract and 2,5<IC50<5µg/ml for AHO 43 extract) and antioxidant activity (IC50=15mg/ml for AHO 3 extract and 10,6mg/ml for AHO 43 extract). The 2 isolates based on phenotypic and molecular characterization using their 16S rRNA gene were identified as Streptomyces chrysomallus (isolate AHO 3) and Streptomyces sp (isolate AHO 43). Moreover, the two essential oils of ginger tested showed antimicrobial activity against all tests germs used and antioxidant activity. Only, ginger essential oil from the site n°2 exhibited moderate antiproliferative potential (IC50=14μg/ml) on colon cancer cells and high antiplasmodial activity (2,5<IC50<5µg/ml). Streptomyces sp showed similar and strong biological activities than those of ginger essential oil from the site n°2. Chemical screening of the Streptomyces sp extract and the essential oil H2 revealed the common presence of terpens and phenolic compounds.}, year = {2016} }
TY - JOUR T1 - Biological Potentials of Ginger Associated Streptomyces Compared with Ginger Essential Oil AU - Herivony Onja Andriambeloson AU - Rado Rasolomampianina AU - Rahanira Ralambondrahety AU - Rigobert Andrianantenaina AU - Marson Raherimandimby AU - Fidèle Randriamiharisoa Y1 - 2016/12/02 PY - 2016 N1 - https://doi.org/10.11648/j.ajls.20160406.13 DO - 10.11648/j.ajls.20160406.13 T2 - American Journal of Life Sciences JF - American Journal of Life Sciences JO - American Journal of Life Sciences SP - 152 EP - 163 PB - Science Publishing Group SN - 2328-5737 UR - https://doi.org/10.11648/j.ajls.20160406.13 AB - Medicinal plants and associated microorganisms are recognized to have beneficial relationship. These two organisms are well known for their ability to produce bioactive secondary metabolites which the similarity has been demonstrated in a few works. This study had for objective to assess biological potentials of actinomycetes isolated from ginger rhizomes and its rhizospheric soil and to determine their similarity and efficiency with ginger essential oil. Among the 63 actinomycetes strains isolated from the rhizomes and rhizospheric soils of two ginger countries plantations of Soavinandriana Itasy-Madagascar, biological activity tests showed that 16 strains (2 endophytes and 14 from rhizospheric soils of ginger) exhibited antimicrobial activity against at least one germ. The strains are more active against Gram+ bacteria and fungi than Gram- bacteria. Only, one strain isolated from ginger rhizospheric soil of the site n°2 (AHO 18) inhibited the development of all tests germs. The tests conducted on six representative strains selected on the basis of antimicrobial assay showed that extracts from the isolates AHO 3 and AHO 43 have strong antiproliferative activity on cells HT-20 (colon cancer) with IC50 values of 5µg/ml and 2,2μg/ml, respectively; strong antimalaria activity against the chloroquino-resistant Plasmodium falciparum strain (IC50=1,25μg/ml for AHO 3 extract and 2,5<IC50<5µg/ml for AHO 43 extract) and antioxidant activity (IC50=15mg/ml for AHO 3 extract and 10,6mg/ml for AHO 43 extract). The 2 isolates based on phenotypic and molecular characterization using their 16S rRNA gene were identified as Streptomyces chrysomallus (isolate AHO 3) and Streptomyces sp (isolate AHO 43). Moreover, the two essential oils of ginger tested showed antimicrobial activity against all tests germs used and antioxidant activity. Only, ginger essential oil from the site n°2 exhibited moderate antiproliferative potential (IC50=14μg/ml) on colon cancer cells and high antiplasmodial activity (2,5<IC50<5µg/ml). Streptomyces sp showed similar and strong biological activities than those of ginger essential oil from the site n°2. Chemical screening of the Streptomyces sp extract and the essential oil H2 revealed the common presence of terpens and phenolic compounds. VL - 4 IS - 6 ER -