In this work the Jacobi’s second equality in the form of stochastic equation and the Wiener path integral approach are used to evaluate the probability density of harmonic oscillator in non-commutative space. Using the factorization theorem and the Mastubara formalism, the thermodynamic parameters are determined. The structure of Fokker-Planck equation remained the same even in a commutative and non-commutative space. Moreover, the non-commutative parameter is depicted for increasing value of the entropy.
Published in | American Journal of Modern Physics (Volume 3, Issue 3) |
DOI | 10.11648/j.ajmp.20140303.14 |
Page(s) | 138-142 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Brownian Motion, Stochastic Equation, Wiener Process, Fokker-Planck Equation, Non-Commutative Space
[1] | M.Tchoffo and A.A.Beilinson, “path integral approach to the kinematical Brownian motion due to random canonical transformation.” Far East J.Appl.Math 36, 1, 2009, pp.25-36 |
[2] | S.Massou, M.Tchoffo, “Factorization of the solution of Fokker-planck equation,” Far East J.Appl.Math volume 10, 2, 2012, pp.161-170. |
[3] | M.Tchoffo, J.C. Ngana et al “Kinematical Brownian motion and time dependent entropy”, Far east J. vol 68, 1, 2012, pp. 21-28. |
[4] | Massou. S, Moussiliou. S and M.Tchoffo ,“stochastic chaos in a class of Fokker-equation derived from population dynamic”, Applied Physics research 4, 3, 2012. |
[5] | LY.Chen, P.L.Nash, “Stochastic Simulations of Clusters: Quantum Methods in Flat and Curved Spaces”, journal of chemical physics 121, 9, 2004. |
[6] | Yu L klimontovich, “Nonlinear Brownian motion physics-Uspekhi” 37, 8, 1994, pp.737-767. |
[7] | J.L.F. Barbón, “Pertubing The groundring of 2D String theory”, Int.J. Mod.Phys. A 07, 7579, 1992. |
[8] | Achim Kempf, “Quantum integration on non-commutative geometries”, polish academy of science 40, 1997. |
[9] | S. Paul Smith, “integral non-commutative space”, journal of algebra 246, 2001, pp.793-810. |
[10] | Hugo Garcia, octa-vio Obregon et al, “Non-commutativity in gravity, topological gravity and cosmology” J of phys (conference serie) 24, 2005, pp.203-212. |
[11] | J.C Ferrando, L.M.Sanchez, R. R. Mountain: “A survey on recent advances on the nikodim boundeness theorem and space of simple function” J.math 34, 2004, pp.139-172. |
[12] | S. A. A Ghorashi, M.Bagheri Harouni, “Decoherence of quantum Brownian motion in non commutative space” physic letters A 377, 2013, pp.952-956. |
[13] | V.P.Belavkin, “quantum ito B-algebras, their classification and decomposi-tion”, polish academy of science 43, 1998 . |
[14] | wlod ziemerz bryz and victor bryc, “strong mixing coefficient for non-commutative Gaussian process”, proc Amer.math. soc 132, 2004, pp.523-534. |
[15] | R.Vilela Mendes, “Quantum mechanics and non-commutative space”, physics letters A 210, 1996, pp.232-240. |
[16] | A. Jahan, “non commutative harmonic oscillator at finite temperature”, a path integral approach, Brazilian journal of physics, 37, 2007. |
[17] | Branko Dragovich, Zoran Rakic, “path integral in non-commutative quantum mechanics”, Theoretical and math phys 140, 3, 2004. pp.1299-1308. |
[18] | M.Chaichian, A.Tureanu, A.Zahahi “solution of the stochastic Langevin equations for clustering of particles in random flows in terms of the wiener path integral”, Phys.Rev. E 81, 066309, 2010 . |
[19] | Iraj Jabbari, Akbar Jahan, and Zafar Riaziturk “Partition function of the harmonic oscillator on a non commutative plane”, J.phys 33, 2009, pp.149-154. |
[20] | Jean Zinn-Justin, "intégrale de chemin en mécanique quantique ", (EDP Sciences/CNRS editions, 2003). |
[21] | A.E. Bernadini and O.Bertolami, “Probing phase-space non-commutativity through quantum beating, missing information and the thermodynamic limit”, Phys.Rev A 88, 012101, 2013. |
[22] | Adil Belhaj, M.chabab et al, “on non-commutative Black holes and their thermodynamics in arbitrary dimension”, The African review of physics 8, 0017, 2013. |
APA Style
Martin Tchoffo, Jules Casimir Ngana Kuetche, Georges Collince Fouokeng, Ngwa Engelbert Afuoti, Lukong Cornelius Fai. (2014). Kinematical Brownian Motion of the Harmonic Oscillator in Non-Commutative Space. American Journal of Modern Physics, 3(3), 138-142. https://doi.org/10.11648/j.ajmp.20140303.14
ACS Style
Martin Tchoffo; Jules Casimir Ngana Kuetche; Georges Collince Fouokeng; Ngwa Engelbert Afuoti; Lukong Cornelius Fai. Kinematical Brownian Motion of the Harmonic Oscillator in Non-Commutative Space. Am. J. Mod. Phys. 2014, 3(3), 138-142. doi: 10.11648/j.ajmp.20140303.14
AMA Style
Martin Tchoffo, Jules Casimir Ngana Kuetche, Georges Collince Fouokeng, Ngwa Engelbert Afuoti, Lukong Cornelius Fai. Kinematical Brownian Motion of the Harmonic Oscillator in Non-Commutative Space. Am J Mod Phys. 2014;3(3):138-142. doi: 10.11648/j.ajmp.20140303.14
@article{10.11648/j.ajmp.20140303.14, author = {Martin Tchoffo and Jules Casimir Ngana Kuetche and Georges Collince Fouokeng and Ngwa Engelbert Afuoti and Lukong Cornelius Fai}, title = {Kinematical Brownian Motion of the Harmonic Oscillator in Non-Commutative Space}, journal = {American Journal of Modern Physics}, volume = {3}, number = {3}, pages = {138-142}, doi = {10.11648/j.ajmp.20140303.14}, url = {https://doi.org/10.11648/j.ajmp.20140303.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20140303.14}, abstract = {In this work the Jacobi’s second equality in the form of stochastic equation and the Wiener path integral approach are used to evaluate the probability density of harmonic oscillator in non-commutative space. Using the factorization theorem and the Mastubara formalism, the thermodynamic parameters are determined. The structure of Fokker-Planck equation remained the same even in a commutative and non-commutative space. Moreover, the non-commutative parameter is depicted for increasing value of the entropy.}, year = {2014} }
TY - JOUR T1 - Kinematical Brownian Motion of the Harmonic Oscillator in Non-Commutative Space AU - Martin Tchoffo AU - Jules Casimir Ngana Kuetche AU - Georges Collince Fouokeng AU - Ngwa Engelbert Afuoti AU - Lukong Cornelius Fai Y1 - 2014/05/30 PY - 2014 N1 - https://doi.org/10.11648/j.ajmp.20140303.14 DO - 10.11648/j.ajmp.20140303.14 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 138 EP - 142 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20140303.14 AB - In this work the Jacobi’s second equality in the form of stochastic equation and the Wiener path integral approach are used to evaluate the probability density of harmonic oscillator in non-commutative space. Using the factorization theorem and the Mastubara formalism, the thermodynamic parameters are determined. The structure of Fokker-Planck equation remained the same even in a commutative and non-commutative space. Moreover, the non-commutative parameter is depicted for increasing value of the entropy. VL - 3 IS - 3 ER -