In this paper, we have studied Friedmann-Robertson-Walker (FRW) cosmological model with quadratic equation of state and cosmological constant in the presence of perfect fluid source in f (R, T) gravity. To obtain an exact solution of the field equations of the theory, we have used quadratic equation of state and time dependent deceleration parameter q (t). The physical and geometrical behavior of the model is also discussed.
Published in | International Journal of Astrophysics and Space Science (Volume 5, Issue 3) |
DOI | 10.11648/j.ijass.20170503.11 |
Page(s) | 41-46 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
f (R, T) Gravity, Cosmological Model, Quadratic Equation of State, Cosmological Constant, Deceleration Parameter
[1] | Tegmark M. et al.: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004). |
[2] | Speergel, D. N., et al.: First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175 (2003). |
[3] | Riess, A. G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). |
[4] | Perlmutter, S., et al.: Measurements of and from 42 high-redshift supernova, Astrophys. J. 517, 565 (1999). |
[5] | Padmanabhan, T.: Accelerated expansion of the universe driven by tachyonicmatter. Phys. Rev. D 66, 021301 (R) (2002). |
[6] | Bento M. C., Bertolami O., Sen A. A.: Generalized Chaplygin gas, accelerated expansion, and dark-energy matter unification. Phys. Rev. D 66, 043507 (2002). |
[7] | Nojiri S., Odintsov S. D.: Modified gravity consistent with realistic cosmology: From a matter dominated epoch to a dark energy universe. Phys. Rev. D 74, 086005 (2006). |
[8] | Bertolami O. et al.: Extra force in modified theories of gravity. Phys. Rev. D 75, 104016 (2007). |
[9] | Bengochea G. R., Ferraro R.: Dark torsion as the cosmic speed-up. Phys. Rev. D 79, 124019 (2007). |
[10] | Harko et al.: gravity, Phys. Rev. D 84, 024020 (2011). |
[11] | Sahoo P. K., Sivakumar M.: LRS Bianchi-I cosmological model in theory of gravity with . Astrophys Space Sci, 357: 60 (2015). |
[12] | Ramesh G., Umadevi S.: Cosmological models with linearly varying deceleration parameter in gravity. Astrophys Space Sci, 361: 2 (2016). |
[13] | Akarsu, O., Dereli, T.: Cosmological models with linearly varying deceleration parameter. Int. J. Theor. Phys. 51, 612 (2012). |
[14] | Ananda K. N., Bruni M.: Cosmological dynamics and dark energy with a non-linear equation of state: A quadratic model. Phys. Rev. D 74, 023523 (2006). |
[15] | Reddy D. R. K., Adhav K. S., Purandare M. A.: Bianchi type-I cosmological model with quadratic equation of state. Astrophys Space Sci, 357: 20 (2015). |
[16] | Akarsu, O., et al.: Probing kinematics and fate of the universe with linearly varying deceleration parameter. Eur. Phys. J. Plus 129, 22 (2014). |
[17] | Berman M. S.: NuovoCimento B 74, 182 (1983). |
[18] | Caldwell, R. R., et al.: Phys. Rev. Lett. 91, 071301 (2003). |
APA Style
Mohammad Moksud Alam, Mohammad Amjad Hossain, Mohammad Ashraful Islam. (2017). Super Exponential Expansion for Dark Energy Model with Variable Λ in f (R, T) Gravity. International Journal of Astrophysics and Space Science, 5(3), 41-46. https://doi.org/10.11648/j.ijass.20170503.11
ACS Style
Mohammad Moksud Alam; Mohammad Amjad Hossain; Mohammad Ashraful Islam. Super Exponential Expansion for Dark Energy Model with Variable Λ in f (R, T) Gravity. Int. J. Astrophys. Space Sci. 2017, 5(3), 41-46. doi: 10.11648/j.ijass.20170503.11
AMA Style
Mohammad Moksud Alam, Mohammad Amjad Hossain, Mohammad Ashraful Islam. Super Exponential Expansion for Dark Energy Model with Variable Λ in f (R, T) Gravity. Int J Astrophys Space Sci. 2017;5(3):41-46. doi: 10.11648/j.ijass.20170503.11
@article{10.11648/j.ijass.20170503.11, author = {Mohammad Moksud Alam and Mohammad Amjad Hossain and Mohammad Ashraful Islam}, title = {Super Exponential Expansion for Dark Energy Model with Variable Λ in f (R, T) Gravity}, journal = {International Journal of Astrophysics and Space Science}, volume = {5}, number = {3}, pages = {41-46}, doi = {10.11648/j.ijass.20170503.11}, url = {https://doi.org/10.11648/j.ijass.20170503.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijass.20170503.11}, abstract = {In this paper, we have studied Friedmann-Robertson-Walker (FRW) cosmological model with quadratic equation of state and cosmological constant in the presence of perfect fluid source in f (R, T) gravity. To obtain an exact solution of the field equations of the theory, we have used quadratic equation of state and time dependent deceleration parameter q (t). The physical and geometrical behavior of the model is also discussed.}, year = {2017} }
TY - JOUR T1 - Super Exponential Expansion for Dark Energy Model with Variable Λ in f (R, T) Gravity AU - Mohammad Moksud Alam AU - Mohammad Amjad Hossain AU - Mohammad Ashraful Islam Y1 - 2017/06/02 PY - 2017 N1 - https://doi.org/10.11648/j.ijass.20170503.11 DO - 10.11648/j.ijass.20170503.11 T2 - International Journal of Astrophysics and Space Science JF - International Journal of Astrophysics and Space Science JO - International Journal of Astrophysics and Space Science SP - 41 EP - 46 PB - Science Publishing Group SN - 2376-7022 UR - https://doi.org/10.11648/j.ijass.20170503.11 AB - In this paper, we have studied Friedmann-Robertson-Walker (FRW) cosmological model with quadratic equation of state and cosmological constant in the presence of perfect fluid source in f (R, T) gravity. To obtain an exact solution of the field equations of the theory, we have used quadratic equation of state and time dependent deceleration parameter q (t). The physical and geometrical behavior of the model is also discussed. VL - 5 IS - 3 ER -