| Peer-Reviewed

Tautomerism of 2-Azido-1, 3, 4-Thiadiazole Studied by Theoretical Methods in Gas Phase and Solution

Received: 18 June 2015     Accepted: 29 June 2015     Published: 28 October 2015
Views:       Downloads:
Abstract

The tautomeric equilibrium of 2-azido-1, 3,4-thiadiazole and [1,3,4] thiadiazolo [3,2-e] tetrazole derivatives (5-H, 5-F, 5-Cl, 5-CH3, 5-CH2CH3, 5-NO2, 5-CN) has been investigated using HF, B3LYP and MP2 level of calculation with the 6-311G (d, p) in the gas phase and solution with full geometry optimization. The calculation results demonstrate 2-azido-1, 3, 4-thiadiazole derivatives are more stable. In addition variation of dipole moments, charges on atoms, HOMO, LUMO and the interfrontier molecular orbital energy gap are studied.

Published in Science Innovation (Volume 3, Issue 6)
DOI 10.11648/j.si.20150306.21
Page(s) 127-134
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

2-Azido-1, 3, 4-Thiadiazole, [1, 3, 4]Thiadiazolo[3,2-E]Tetrazole, Tautomerism,Polarizable Continuum Model (PCM), Tautomerism, Density Functional Theory (DFT)

References
[1] H. Kaur, S. Kumar, I. Singh, K.K. Saxena, A. Kumar, Dig J Nanomater Bios. 5(1) (2010) 67-76.
[2] C. Franchini, M. Muraglia, F. Corbo, M.A. Florio, A.D. Mola, A. Rosato, R. Matucci, M. Nesi, F.V. Bambeke, C. Vitali, Arch. Pharm. Chem. Life Sci. 342 (2009) 605-613.
[3] V.R. Solomon, H. Changkun, L. Hoyun, Life Sci. 8(3) (2011) 257-265]
[4] K.G. Desai a, J.P. Ravalb and K.R. Desaic, J Iran Chem Soc. 3(3), (2006) 233-241
[5] S.K. Sonwane, S.D. Srivastava. Proc. Nat. Acnd. Sci. India. 78A (II) (2008) 129-136.
[6] L. A. Flippin, Tetrahedron Lett. 32 (1991) 6857-6860; b) A.J.A. Cobb, D.M. Shaw, S.V. Ley, Synlett. 3 (2004) 558-560; c) M.B. Talawar, A.P. Agrawal, M. Anniyappan, D.S. Wani, M.K. Bansode, G.M. Gore, J. Hazard. Mater. 137 B (2006) 1074-1078.
[7] a) H. Singh, A.S. Chawla, V.K. Kapoor, D. Paul, R.K. Malhotra, Prog. Med. Chem. 17(1980) 151-183; b) R.J. Herr, Bioorg. Med. Chem, 10 (2002) 3379-3393.
[8] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A. . Daniels, O. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[9] W. Kohn, L. J. Sham, Phys. Rev. 140 (1965)A1133–A1138,
[10] R. G.Parr,W. Yang, Oxford University Press, London, UK, 1989.
[11] D. C.Young, Wiley-Interscience, NY, USA, 2001.
[12] A.E. Reed, L.A. Curtiss, F. Wienhold, Chem. Rev. 88 (1988) 899.
[13] J. Tomasi, M. Persico, Chem. Rev. 94 (7) (1994) 2027–2094.
[14] E. Cancès, B. Mennucci, and J. Tomasi. Citation: J. Chem. Phys. 107 (1997) 3032-3042
[15] V. Barone, M. Cossi, J. Tomasi, J. Comput. Chem. 19 (4) (1998) 404-417.
[16] A. Assoma, Benjamine, Bede A.Lucie, Kone M, NGussan,Y. Thomas, Europen journal of scientific research, , 44( 2) (2010) 337-354.
[17] C. Peng, P.Y Ayala, H.B Schlegel, M. J Frisch, J. Comp. Chem, , 17 (1996) 49-56.
[18] M.W. Wong, K.B. Wiberg, M.J. Frisch, J. Am. Chem. Soc. 114 (1992) 1645.
Cite This Article
  • APA Style

    Zeinab Dalirnasab, Zeinab Suri, Sudabeh Dalirnasab. (2015). Tautomerism of 2-Azido-1, 3, 4-Thiadiazole Studied by Theoretical Methods in Gas Phase and Solution. Science Innovation, 3(6), 127-134. https://doi.org/10.11648/j.si.20150306.21

    Copy | Download

    ACS Style

    Zeinab Dalirnasab; Zeinab Suri; Sudabeh Dalirnasab. Tautomerism of 2-Azido-1, 3, 4-Thiadiazole Studied by Theoretical Methods in Gas Phase and Solution. Sci. Innov. 2015, 3(6), 127-134. doi: 10.11648/j.si.20150306.21

    Copy | Download

    AMA Style

    Zeinab Dalirnasab, Zeinab Suri, Sudabeh Dalirnasab. Tautomerism of 2-Azido-1, 3, 4-Thiadiazole Studied by Theoretical Methods in Gas Phase and Solution. Sci Innov. 2015;3(6):127-134. doi: 10.11648/j.si.20150306.21

    Copy | Download

  • @article{10.11648/j.si.20150306.21,
      author = {Zeinab Dalirnasab and Zeinab Suri and Sudabeh Dalirnasab},
      title = {Tautomerism of 2-Azido-1, 3, 4-Thiadiazole Studied by Theoretical Methods in Gas Phase and Solution},
      journal = {Science Innovation},
      volume = {3},
      number = {6},
      pages = {127-134},
      doi = {10.11648/j.si.20150306.21},
      url = {https://doi.org/10.11648/j.si.20150306.21},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.si.20150306.21},
      abstract = {The tautomeric equilibrium of 2-azido-1, 3,4-thiadiazole and [1,3,4] thiadiazolo [3,2-e] tetrazole derivatives (5-H, 5-F, 5-Cl, 5-CH3, 5-CH2CH3, 5-NO2, 5-CN) has been investigated using HF, B3LYP and MP2 level of calculation with the 6-311G (d, p) in the gas phase and solution with full geometry optimization. The calculation results demonstrate 2-azido-1, 3, 4-thiadiazole derivatives are more stable. In addition variation of dipole moments, charges on atoms, HOMO, LUMO and the interfrontier molecular orbital energy gap are studied.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Tautomerism of 2-Azido-1, 3, 4-Thiadiazole Studied by Theoretical Methods in Gas Phase and Solution
    AU  - Zeinab Dalirnasab
    AU  - Zeinab Suri
    AU  - Sudabeh Dalirnasab
    Y1  - 2015/10/28
    PY  - 2015
    N1  - https://doi.org/10.11648/j.si.20150306.21
    DO  - 10.11648/j.si.20150306.21
    T2  - Science Innovation
    JF  - Science Innovation
    JO  - Science Innovation
    SP  - 127
    EP  - 134
    PB  - Science Publishing Group
    SN  - 2328-787X
    UR  - https://doi.org/10.11648/j.si.20150306.21
    AB  - The tautomeric equilibrium of 2-azido-1, 3,4-thiadiazole and [1,3,4] thiadiazolo [3,2-e] tetrazole derivatives (5-H, 5-F, 5-Cl, 5-CH3, 5-CH2CH3, 5-NO2, 5-CN) has been investigated using HF, B3LYP and MP2 level of calculation with the 6-311G (d, p) in the gas phase and solution with full geometry optimization. The calculation results demonstrate 2-azido-1, 3, 4-thiadiazole derivatives are more stable. In addition variation of dipole moments, charges on atoms, HOMO, LUMO and the interfrontier molecular orbital energy gap are studied.
    VL  - 3
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Department of Chemistry, Faculty of science, Kangan Payam Noor University, Kangan, Iran

  • Department of Chemistry, Faculty of science, Khorramabad Payam Noor University, Khorramabad, Iran

  • Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran

  • Sections