The tautomeric equilibrium of 2-azido-1, 3,4-thiadiazole and [1,3,4] thiadiazolo [3,2-e] tetrazole derivatives (5-H, 5-F, 5-Cl, 5-CH3, 5-CH2CH3, 5-NO2, 5-CN) has been investigated using HF, B3LYP and MP2 level of calculation with the 6-311G (d, p) in the gas phase and solution with full geometry optimization. The calculation results demonstrate 2-azido-1, 3, 4-thiadiazole derivatives are more stable. In addition variation of dipole moments, charges on atoms, HOMO, LUMO and the interfrontier molecular orbital energy gap are studied.
Published in | Science Innovation (Volume 3, Issue 6) |
DOI | 10.11648/j.si.20150306.21 |
Page(s) | 127-134 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
2-Azido-1, 3, 4-Thiadiazole, [1, 3, 4]Thiadiazolo[3,2-E]Tetrazole, Tautomerism,Polarizable Continuum Model (PCM), Tautomerism, Density Functional Theory (DFT)
[1] | H. Kaur, S. Kumar, I. Singh, K.K. Saxena, A. Kumar, Dig J Nanomater Bios. 5(1) (2010) 67-76. |
[2] | C. Franchini, M. Muraglia, F. Corbo, M.A. Florio, A.D. Mola, A. Rosato, R. Matucci, M. Nesi, F.V. Bambeke, C. Vitali, Arch. Pharm. Chem. Life Sci. 342 (2009) 605-613. |
[3] | V.R. Solomon, H. Changkun, L. Hoyun, Life Sci. 8(3) (2011) 257-265] |
[4] | K.G. Desai a, J.P. Ravalb and K.R. Desaic, J Iran Chem Soc. 3(3), (2006) 233-241 |
[5] | S.K. Sonwane, S.D. Srivastava. Proc. Nat. Acnd. Sci. India. 78A (II) (2008) 129-136. |
[6] | L. A. Flippin, Tetrahedron Lett. 32 (1991) 6857-6860; b) A.J.A. Cobb, D.M. Shaw, S.V. Ley, Synlett. 3 (2004) 558-560; c) M.B. Talawar, A.P. Agrawal, M. Anniyappan, D.S. Wani, M.K. Bansode, G.M. Gore, J. Hazard. Mater. 137 B (2006) 1074-1078. |
[7] | a) H. Singh, A.S. Chawla, V.K. Kapoor, D. Paul, R.K. Malhotra, Prog. Med. Chem. 17(1980) 151-183; b) R.J. Herr, Bioorg. Med. Chem, 10 (2002) 3379-3393. |
[8] | M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A. . Daniels, O. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian, Inc., Wallingford CT, 2009. |
[9] | W. Kohn, L. J. Sham, Phys. Rev. 140 (1965)A1133–A1138, |
[10] | R. G.Parr,W. Yang, Oxford University Press, London, UK, 1989. |
[11] | D. C.Young, Wiley-Interscience, NY, USA, 2001. |
[12] | A.E. Reed, L.A. Curtiss, F. Wienhold, Chem. Rev. 88 (1988) 899. |
[13] | J. Tomasi, M. Persico, Chem. Rev. 94 (7) (1994) 2027–2094. |
[14] | E. Cancès, B. Mennucci, and J. Tomasi. Citation: J. Chem. Phys. 107 (1997) 3032-3042 |
[15] | V. Barone, M. Cossi, J. Tomasi, J. Comput. Chem. 19 (4) (1998) 404-417. |
[16] | A. Assoma, Benjamine, Bede A.Lucie, Kone M, NGussan,Y. Thomas, Europen journal of scientific research, , 44( 2) (2010) 337-354. |
[17] | C. Peng, P.Y Ayala, H.B Schlegel, M. J Frisch, J. Comp. Chem, , 17 (1996) 49-56. |
[18] | M.W. Wong, K.B. Wiberg, M.J. Frisch, J. Am. Chem. Soc. 114 (1992) 1645. |
APA Style
Zeinab Dalirnasab, Zeinab Suri, Sudabeh Dalirnasab. (2015). Tautomerism of 2-Azido-1, 3, 4-Thiadiazole Studied by Theoretical Methods in Gas Phase and Solution. Science Innovation, 3(6), 127-134. https://doi.org/10.11648/j.si.20150306.21
ACS Style
Zeinab Dalirnasab; Zeinab Suri; Sudabeh Dalirnasab. Tautomerism of 2-Azido-1, 3, 4-Thiadiazole Studied by Theoretical Methods in Gas Phase and Solution. Sci. Innov. 2015, 3(6), 127-134. doi: 10.11648/j.si.20150306.21
AMA Style
Zeinab Dalirnasab, Zeinab Suri, Sudabeh Dalirnasab. Tautomerism of 2-Azido-1, 3, 4-Thiadiazole Studied by Theoretical Methods in Gas Phase and Solution. Sci Innov. 2015;3(6):127-134. doi: 10.11648/j.si.20150306.21
@article{10.11648/j.si.20150306.21, author = {Zeinab Dalirnasab and Zeinab Suri and Sudabeh Dalirnasab}, title = {Tautomerism of 2-Azido-1, 3, 4-Thiadiazole Studied by Theoretical Methods in Gas Phase and Solution}, journal = {Science Innovation}, volume = {3}, number = {6}, pages = {127-134}, doi = {10.11648/j.si.20150306.21}, url = {https://doi.org/10.11648/j.si.20150306.21}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.si.20150306.21}, abstract = {The tautomeric equilibrium of 2-azido-1, 3,4-thiadiazole and [1,3,4] thiadiazolo [3,2-e] tetrazole derivatives (5-H, 5-F, 5-Cl, 5-CH3, 5-CH2CH3, 5-NO2, 5-CN) has been investigated using HF, B3LYP and MP2 level of calculation with the 6-311G (d, p) in the gas phase and solution with full geometry optimization. The calculation results demonstrate 2-azido-1, 3, 4-thiadiazole derivatives are more stable. In addition variation of dipole moments, charges on atoms, HOMO, LUMO and the interfrontier molecular orbital energy gap are studied.}, year = {2015} }
TY - JOUR T1 - Tautomerism of 2-Azido-1, 3, 4-Thiadiazole Studied by Theoretical Methods in Gas Phase and Solution AU - Zeinab Dalirnasab AU - Zeinab Suri AU - Sudabeh Dalirnasab Y1 - 2015/10/28 PY - 2015 N1 - https://doi.org/10.11648/j.si.20150306.21 DO - 10.11648/j.si.20150306.21 T2 - Science Innovation JF - Science Innovation JO - Science Innovation SP - 127 EP - 134 PB - Science Publishing Group SN - 2328-787X UR - https://doi.org/10.11648/j.si.20150306.21 AB - The tautomeric equilibrium of 2-azido-1, 3,4-thiadiazole and [1,3,4] thiadiazolo [3,2-e] tetrazole derivatives (5-H, 5-F, 5-Cl, 5-CH3, 5-CH2CH3, 5-NO2, 5-CN) has been investigated using HF, B3LYP and MP2 level of calculation with the 6-311G (d, p) in the gas phase and solution with full geometry optimization. The calculation results demonstrate 2-azido-1, 3, 4-thiadiazole derivatives are more stable. In addition variation of dipole moments, charges on atoms, HOMO, LUMO and the interfrontier molecular orbital energy gap are studied. VL - 3 IS - 6 ER -